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Abstract

In the present study, (i) the classical Von Kárman theory, (ii) the first-order shear deformation theory and (iii) the

higher-order (third-order) shear deformation theory are compared for studying the nonlinear forced vibrations of isotropic

and laminate composite rectangular plates. In particular, the harmonic response in the frequency neighborhood of the

fundamental mode of rectangular plates is investigated and the response curves computed by using the three different

theories are compared. The boundary conditions of the plates are simply supported with immovable edges. Geometric

imperfections are taken into account. Calculations for isotropic and laminated composite plates are presented and results

are discussed. For isotropic plates, the frequency-response curves for large-amplitude vibrations obtained by using

the three theories are almost coincident. For laminated composite plates, differences arise for relatively thick plates

(ratio between the thickness and the edge equal to 0.1), while for thin plates (ratio between the thickness and the edge equal

to 0.01), no difference is obtained. For all cases, the first-order shear deformation (with shear correction factor
ffiffiffi
3
p

=2) and
the higher-order shear deformation theories give practically coincident results and differences are observed with respect to

the classical Von Kárman theory.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Classical and shear deformable theories are presented by Amabili [1] and Reddy [2]. A literature review of
work on the nonlinear vibrations of plates is given by Chia [3,4] and Sathyamoorthy [5]. Nonlinear vibrations
of plates have been studied using the classical Von Kárman nonlinear plate theory by many authors for
isotropic and laminated composite plates, see, for example, Refs. [6–18].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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In the case of moderately thick laminated plates, the classical plate theories can become inaccurate. In fact,
the hypotheses of negligible shear deformation and rotary inertia for thick laminated shells can be a rough
approximation. For laminated composite plates, because of the anisotropic material, there is a coupling
between bending and stretching. The use of the Kirchhoff–Love hypothesis, which assumes that the normals
to the middle surface after deformation remain straight and undergo no thickness stretching, gives rise to an
overpredition of natural frequencies in laminated composite plates; this is due to neglecting shear strains and
rotary inertia. For this reason, the nonlinear first-order shear deformation theory (SDT) and the nonlinear
higher-order SDT have been used to study nonlinear vibrations of laminated plates, for example by Reddy
and Chao [19], Reddy [20], Chen and Doong [21], Ganapathi et al. [22], Bhimaraddi [23], Rao et al. [24],
Tenneti and Chandrashekhara [25], Singh et al. [26], Chen et al. [27], Huang and Zheng [28] and Chen
et al. [29].

In the present study, (i) the classical Von Kárman theory, (ii) the first-order SDT and (iii) the higher-order
(third-order) SDT are compared for studying the nonlinear forced vibrations of isotropic and laminate
composite rectangular plates. In particular, the harmonic response in the frequency neighborhood of the
fundamental mode of rectangular plates is investigated and the response curves computed by using the three
different theories are compared. The boundary conditions of the plates are simply supported with immovable
edges. Calculations for isotropic and laminated composite plates are presented and results are discussed.
Geometric imperfections are taken into account. The aim of the present work is to find the area of
applicability of the classical Von Kárman theory, which gives models with a reduced number of degrees of
freedom (dofs) with respect to shear deformation theories, and applications where the use of shear
deformation theories is necessary to obtain accurate results.

2. Shear deformable theories

2.1. Nonlinear first-order SDT

The nonlinear first-order SDT of plates, introduced by Reddy and Chao [19], is presented. Five independent
variables, three displacements u, v and w and two rotations f1 and f2, are used to describe the plate’s middle
plane deformation; the geometric imperfection w0 in the normal direction is also introduced. This theory may
be regarded as the thick-plate version of the Von Kárman theory since the nonlinear terms are the same.

A laminated rectangular plate of thickness h, made of a finite number of orthotropic layers oriented
arbitrarily with respect to the plate orthogonal coordinate system (x, y, z), is considered. The coordinate
system is chosen such that x and y lie on the middle surface, which is obtained for z ¼ 0, and are parallel to the
edges; the coordinate z is taken perpendicular to the middle surface.

The hypotheses are (i) the transverse normal stress sz is negligible; in general, it is verified that sz is small
compared with txz and tyz, except near the edges, so that the hypothesis is a good approximation of the actual
behavior of moderately thick plates and (ii) the normal to the middle surface of the plate before deformation
remains straight, but not necessarily normal, after deformation; this is a relaxed version of the Kirchhoff
hypothesis.

The displacements u1, u2, u3 of a generic point at distance z from the middle plane (see Fig. 1) are related to
the middle surface displacements u, v, w by

u1 ¼ uþ zf1; u2 ¼ vþ zf2; u3 ¼ wþ w0, (1a2c)

where f1 and f2 are the rotations of the transverse normals about the y and x axes, respectively, and w0 is
the geometrical imperfection in the z direction. A higher-order (in z) displacement field can be assumed in
Eqs. (1a–c); however, a linear field in z is assumed for the first-order SDT. In Eq. (1c), it is assumed that the
normal displacement is constant through the thickness, which means that eZ ¼ 0 is assumed.

The strain–displacement equations for the first-order SDT are given by [1]

�x ¼ �x;0 þ z kð0Þx , (2a)

�y ¼ �y;0 þ z kð0Þy , (2b)
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Fig. 1. Rectangular plate: (a) coordinates and dimensions and (b) symbols used for displacements of middle surface and a generic point.
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gxy ¼ gxy;0 þ z kð0Þxy , (2c)

gxz ¼ gxz;0, (2d)

gyz ¼ gyz;0, (2e)

where

�x;0 ¼
qu

qx
þ

1

2

qw

qx

� �2

þ
qw

qx

qw0

qx
, (3a)

�y;0 ¼
qv

qy
þ

1

2

qw

qy

� �2

þ
qw

qy

qw0

qy
, (3b)

gxy;0 ¼
qu

qy
þ

qv

qx
þ

qw

qx

qw

qy
þ

qw

qx

qw0

qy
þ

qw0

qx

qw

qy
, (3c)

gxz;0 ¼ f1 þ
qw

qx
, (3d)

gyz;0 ¼ f2 þ
qw

qy
, (3e)

kð0Þx ¼
qf1

qx
, (3f)

kð0Þy ¼
qf2

qy
, (3g)
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kð0Þxy ¼
qf1

qy
þ

qf2

qx
. (3h)

Eqs. (2d,e) show a uniform distribution of shear strains through the shell thickness, which gives uniform
shear stresses. The top and bottom surfaces of the shell can clearly not support shear stresses; therefore, the
result is only a first approximation. The actual distribution of shear stresses is close to a parabolic distribution
through the thickness, taking zero value at the top and bottom surfaces. For this reason, for equilibrium
considerations, it is necessary to introduce a shear correction factor with the first-order SDT in order not to
overestimate the shear forces.

2.2. Nonlinear higher-order SDT

A nonlinear, higher-order SDT of plates has been introduced by Reddy [30]. The reason for introducing this
theory is to overcome the limit of the uniform shear strain and stress distribution through the thickness,
obtained with the first-order SDT. A discussion about different formulations of nonlinear higher-order shear
deformation theories for plates and their equivalence is given by Reddy [31]

A laminated rectangular plate, made of a finite number of orthotropic layers, oriented arbitrarily with
respect to the plate coordinate system (x, y, z), is considered; however, the theory is unchanged for isotropic
and functionally graded materials. The displacements of a generic point are related to the middle surface
displacements by

u1 ¼ uþ zf1 þ z2c1 þ z3g1 þ z4y1, (4a)

u2 ¼ vþ zf2 þ z2c2 þ z3g2 þ z4y2, (4b)

u3 ¼ wþ w0, (4c)

where f1 and f2 are the rotations of the transverse normals at z ¼ 0 about the y and x axes, respectively, and
the other terms can be computed as functions of w, f1 and f2. After satisfying the zero shear strains at
z ¼7h/2, see Amabili [1], the following expressions are obtained:

u1 ¼ uþ zf1 �
4

3h2
z3 f1 þ

qw

qx

� �
, (5a)

u2 ¼ vþ zf2 �
4

3h2
z3 f2 þ

qw

qy

� �
, (5b)

u3 ¼ wþ w0, (5c)

where the geometric imperfection w0 in the normal direction has been introduced. Eqs. (5a,b) represent
the parabolic distribution of shear effects through the thickness and satisfy the zero shear boundary
condition at both the top and bottom surfaces of the plate. This is the justification for the use of a third-order
SDT.

The strain–displacement equations for the higher-order SDT, keeping the terms up to z3, can be written
as [1]

�x ¼ �x;0 þ zðkð0Þx þ z2kð2Þx Þ, (6a)

�y ¼ �y;0 þ zðkð0Þy þ z2kð2Þy Þ, (6b)

gxy ¼ gxy;0 þ zðkð0Þxy þ z2kð2Þxy Þ, (6c)

gxz ¼ gxz;0 þ zðzkð1Þxz Þ, (6d)

gyz ¼ gyz;0 þ zðzkð1Þyz Þ, (6e)
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where

�x;0 ¼
qu

qx
þ

1

2

qw

qx

� �2

þ
qw

qx

qw0

qx
, (7a)

�y;0 ¼
qv

qy
þ

1

2

qw

qy

� �2

þ
qw

qy

qw0

qy
, (7b)

gxy;0 ¼
qv

qx
þ

qu

qy
þ

qw

qx

qw

qy
þ

qw

qx

qw0

qy
þ

qw0

qx

qw

qy
, (7c)

gxz;0 ¼ f1 þ
qw

qx
, (7d)

gyz;0 ¼ f2 þ
qw

qy
, (7e)

kð0Þx ¼
qf1

qx
, (8a)

kð2Þx ¼ �
4

3h2

qf1

qx
þ

q2w
qx2

� �
, (8b)

kð0Þy ¼
qf2

qy
, (8c)

kð2Þy ¼ �
4

3h2

qf2

qy
þ

q2w
qy2

� �
, (8d)

kð0Þxy ¼
qf1

qy
þ

qf2

qx
, (8e)

kð2Þxy ¼ �
4

3h2

qf1

qy
þ

qf2

qx
þ 2

q2w

qxqy

� �
, (8f)

kð1Þxz ¼ �
4

h2
gxz;0; kð1Þyz ¼ �

4

h2
gyz;0. (8g,h)

2.3. Elastic strain energy for laminated plates

The stress–strain relations for the kth orthotropic lamina of the plate, in the material principal coordinates,
under the hypothesis s3 ¼ 0, are given by

s1
s2
t23
t13
t12

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ðkÞ

¼

c11 c12 0 0 0

c21 c22 0 0 0

0 0 G23 0 0

0 0 0 G13 0

0 0 0 0 G12

2
6666664

3
7777775

ðkÞ �1

�2

g23
g13
g12

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
, (9)

where G12, G13 and G23 are the shear moduli in 1–2, 1–3 and 2–3 directions, respectively, and the coefficients cij

are given in Appendix A; t13 and t23 are the shear stresses and the superscript (k) refers to the kth layer within
a laminate. Eq. (9) is obtained (i) under the transverse isotropy assumption with respect to planes parallel to
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the 2–3 plane, i.e., assuming fibers in the direction parallel to axis 1, so that E2 ¼ E3, G12 ¼ G13 and n12 ¼ n13,
and (ii) solving the constitutive equations for e3 as a function of e1 and e2 and then eliminating it.

Eq. (9) can be transformed to the plate coordinates (x, y, z) by the following vectorial equation:

sx

sy

tyz

txz

txy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ðkÞ

¼ ½Q�ðkÞ

�x

�y

gyz

gxz

gxy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
, (10)

where ½Q�ðkÞ is the 5� 5 matrix of the material properties of the kth layer transformed in the plate principal
coordinates and it is given in Appendix A. In particular, Eq. (10) can be written as

sx

sy

tyz

txz

txy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ðkÞ

¼ ½Q�ðkÞ

�x;0

�y;0

gyz;0

gxz;0

gxy;0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
þ z½Q�ðkÞ

kð0Þx

kð0Þy

0

0

kð0Þxy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
þ z2½Q�ðkÞ

0

0

kð1Þyz

kð1Þxz

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
þ z3½Q�ðkÞ

kð2Þx

kð2Þy

0

0

kð2Þxy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

(11)

for the first-order SDT, the terms in z2 and z3 do not appear.
The elastic strain energy UP of the plate is given by

UP ¼
1

2

XK

k¼1

Z a

0

Z b

0

Z hðkÞ

hðk�1Þ
sðkÞx �x þ sðkÞy �y þ tðkÞxy gxy þ K2

xt
ðkÞ
xz gxz þ K2

yt
ðkÞ
yz gyz

� �
dxdydz, (12)

where K is the total number of layers in the laminated shell, a and b are the in-plane dimensions, (h(k�1), h(k))
are the z coordinates of the kth layer and Kx and Ky the shear correction factors, which are equal to one
(no correction) for the higher-order SDT. The shear correction factor used in the present calculations for the
first-order SDT is K2

x ¼ K2
y ¼

ffiffiffi
3
p

=2.

2.4. Kinetic energy with rotary inertia for laminated plates

The kinetic energy TP of the plate, including rotary inertia, is given by

TP ¼
1

2

XK

k¼1

rðkÞP

Z a

0

Z b

0

Z hðkÞ

hðk�1Þ
ð _u2

1 þ _u2
2 þ _u2

3Þdxdydz, (13)

where rðkÞP is the mass density of the kth layer of the plate and the overdot denotes the time derivative. For the
first-order SDT, Eq. (13) becomes

TP ¼
1

2

XK

k¼1

rðkÞP

Z a

0

Z b

0

Z hðkÞ

hðk�1Þ
f _u2 þ _v2 þ _w2 þ z½2 _f1 _uþ 2 _f2 _v� þ z2½ _f

2

1 þ
_f
2

2�gdxdydz. (14)

The z term vanishes after integration on z in the case of a laminate with symmetric density with respect to
the z-axis.

For the higher-order SDT, Eq. (13) becomes

TP ¼
1

2

XK

k¼1

rðkÞP

Z a

0

Z b

0

Z hðkÞ

hðk�1Þ
_u2 þ _v2 þ _w2 þ z½2 _f1 _uþ 2 _f2 _v�
�

þ z2½ _f
2

1 þ
_f
2

2�

þz3 �2
4

3h2
_u _f1 þ

q _w
qx

� �
� 2

4

3h2
_v _f2 þ

q _w
qy

� �� 	
þOðz4Þ

	

dxdydz, (15)
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where O(z4) are small terms compared with z2; the z and z3 terms vanish after integration on z in the case of a
laminate with symmetric density with respect to the z-axis.

3. Boundary conditions and discretization

In order to reduce the system to finite dimensions, the middle surface displacements u, v and w are expanded
using approximate functions.

A specific boundary conditions is analyzed in the present study: simply supported plate with immovable
edges. The boundary conditions for the simply supported plate with immovable edges are as follows:

u ¼ v ¼ w ¼ f2 ¼ w0 ¼Mx ¼ q2w0=qx2 ¼ 0 at x ¼ 0; a, (16a2g)

u ¼ v ¼ w ¼ f1 ¼ w0 ¼My ¼ q2w0=qy2 ¼ 0 at y ¼ 0; b, (17a2g)

where Mx and My are the bending moment per unit length.
The following base of panel displacements, which satisfy identically the geometric boundary conditions

(16a–d) and (17a–d), is used to discretize the system:

uðx; y; tÞ ¼
XM
m¼1

XN

n¼1

u2m;nðtÞ sin ð2mpx=aÞ sin ðnpy=bÞ, (18a)

vðx; y; tÞ ¼
XM
m¼1

XN

n¼1

vm;2nðtÞsinðmpx=aÞ sin ð2npy=bÞ, (18b)

wðx; y; tÞ ¼
X̂M
m¼1

X̂N

n¼1

wm;nðtÞ sin ðmpx=aÞ sin ðnpy=bÞ, (18c)

f1ðx; y; tÞ ¼
X̂M
m¼1

X̂N

n¼1

f1m;n
ðtÞ cos ðmpx=aÞ sin ðnpy=bÞ, (18d)

f2ðx; y; tÞ ¼
X̂M
m¼1

X̂N

n¼1

f2m;n
ðtÞ sin ðmpx=aÞ cos ðnpy=bÞ, (18e)

where m and n are the numbers of half-waves in x and y directions, respectively, and t is the time; um,n(t),
vm,n(t), wm,n(t), f1m;n

ðtÞ and f2m;n
ðtÞ are the generalized coordinates that are unknown functions of t. M and N

indicate the terms necessary in the expansion of the in-plane displacements and, in general, are larger than M̂

and N̂, respectively, which indicate the terms in the expansion of out-of-plane displacement and rotations. By
using a different number of terms in the expansions, it is possible to study the convergence and the accuracy of
the solution.

Initial geometric imperfections of the rectangular plate are considered only in the z direction. They are
assumed to be associated with zero initial stress. The imperfection w0 is expanded in the same form as w, that
is, in a double Fourier sine series satisfying the boundary conditions (16e,g) and (17e,g) at the plate edges

w0ðx; yÞ ¼
X~M
m¼1

X~N
n¼1

Am;n sin ðmpx=aÞ sinðnpy=bÞ, (19)

where Am,n are the modal amplitudes of imperfections; ~N and ~M are integers indicating the number of terms in
the expansion.

The boundary conditions 16(f) and 17(f) can be transformed into

Mx ¼
XK

k¼1

Z hðkÞ

hðk�1Þ
sðkÞx zd z ¼ 0 at x ¼ 0; a, (20a)
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My ¼
XK

k¼1

Z hðkÞ

hðk�1Þ
sðkÞy zdz ¼ 0 at y ¼ 0; b, (20b)

where the stresses sx and sy, which are functions of z and of the different material properties in each layer of
the laminate, are related to the strains by Eqs. (10) and (11). For the given expressions of kð0Þx , kð2Þx , kð0Þy and kð2Þy ,
which are all zero at x ¼ 0, a and y ¼ 0, b for the given expansions (18a–e), Eqs. (20a,b) are identically
satisfied for symmetric laminates. Additional terms must be added to expansions of the in-plane displacements
u and v for asymmetric laminates in order to satisfy exactly Eqs. (20a,b), as shown in Appendix B. In fact,
bending and stretching are coupled for asymmetric laminates.

4. Lagrange equations of motion

The virtual work W done by the external forces is written as

W ¼

Z a

0

Z b

0

ðqxuþ qyvþ qzwÞdxdy, (21)

where qx, q
y
and qz are the distributed forces per unit area acting in x, y and z directions, respectively, applied

at the middle surface. Only a single harmonic force orthogonal to the plate is considered; therefore,
qx ¼ q

y
¼ 0. The external distributed load qz applied to the plate, due to the normal concentrated force ~f , is

given by

qz ¼
~f dðx� ~xÞdðy� ~yÞcosðotÞ, (22)

where o is the excitation frequency, t is the time, d is the Dirac delta function, ~f gives the force magnitude
positive in the z direction and ~x and ~y give the position of the point of application of the force. Here, the point
excitation is located at the center of the plate, that is, ~x ¼ a=2, ~y ¼ b=2. Eq. (21) can be rewritten in the
following form:

W ¼ ~f cosðotÞðwÞx¼a=2; y¼b=2. (23)

The nonconservative damping forces are assumed to be of the viscous type and are taken into account by
using the Rayleigh dissipation function:

F ¼
1

2
c

Z a

0

Z b

0

ð _u2 þ _v2 þ _w2 þ _f
2

1 þ
_f
2

2Þdxdy, (24)

where c has a different value for each term of the mode expansion, in particular

F ¼
1

2

ab

4

XN

n¼1

XM
m¼1

cm;n

_u2
m;n þ _v

2
m;n

h2
þ
X̂N

n¼1

X̂M
m¼1

cm;n

_w2
m;n

h2
þ _f

2

1m;n
þ _f

2

2m;n

 !" #
. (25)

In Eq. (25), displacements are nondimensionalized dividing by h, while rotations are already
nondimensional. The damping coefficient cm,n is related to the modal damping ratio that can be evaluated
from experiments by zm;n ¼ cm;n=ð2mm;n om;nÞ, where om,n is the natural circular frequency of mode (m, n) and
mm,n is the modal mass of this mode.

The following notation is introduced for brevity:

q ¼ fum;n; vm;n;wm;n;f1m;n
;f2m;n

gT; m ¼ 1; . . . ;M or M̂ and n ¼ 1; . . . ;N or N̂. (26)

The generic element of the time-dependent vector q is referred to as qj; the dimension of q is N̄, which is the
number of dofs used in the mode expansion.

The generalized forces Qj are obtained by differentiation of the Rayleigh dissipation function and of the
virtual work done by external forces:

Qj ¼ �
qF

q _qj

þ
qW

qqj

. (27)
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The Lagrange equations of motion are

d

dt

qTP

q _qj

 !
�

qTP

qqj

þ
qUP

qqj

¼ Qj ; j ¼ 1; . . . ; N̄, (28)

where qTP=qqj ¼ 0. The complicated term, derived from the maximum potential energy of the plate, giving
quadratic and cubic nonlinearities, can be written in the form

qU

qqj

¼
XN̄

i¼1

f j;iqi þ
XN̄

i;k¼1

f j;i;kqiqk þ
XN̄

i;k;l¼1

f j;i;k;lqiqkql ; j ¼ 1; . . . ; N̄, (29)

where the coefficients f have long expressions that include also geometric imperfections. It is interesting to
observe that in Eq. (29) there are quadratic and cubic terms. In particular, quadratic terms appear in all the
equations of motion as a consequence of including in-plane generalized coordinates. If the simpler Von
Kárman equation of motion is used neglecting in-plane inertia, only cubic nonlinearities are obtained for
perfectly flat plates. The presence of quadratic nonlinearities in the discretized equations of motion lead to the
appearance of second-order harmonic components in response to harmonic excitation in the neighborhood of
a plate resonance. Third-order harmonics are due to cubic nonlinearities and are obtained both retaining and
neglecting in-plane inertia. In the presence of geometric imperfections, plates become shallow shells; due to the
curvature of the middle surface, stronger second-order harmonics appear.

4.1. Inertial coupling in the equations of motion

For plates with rotary inertia, inertial coupling arises in the equations of motion (see Eq. (15)) so that they
cannot be immediately transformed in the form required for numerical integration. In particular, the
equations of motion take the following form:

M€qþ C_qþ ½KþN2ðqÞ þN3ðq; qÞ�q ¼ f0 cosðotÞ, (30)

where M is the nondiagonal mass matrix of dimension N̄ � N̄ (N̄ being the number of dofs), C the damping
matrix, K the linear stiffness matrix, which does not present terms involving q, N2 the matrix that involves
linear terms in q, therefore giving the quadratic nonlinear stiffness terms, N3 the matrix that involves quadratic
terms in q, therefore giving the cubic nonlinear stiffness terms, f0 the vector of excitation amplitudes and q the
vector of the N̄ generalized coordinates, defined in Eq. (26). In particular, by using Eq. (29), the generic
elements kj,i, n2j;i and n3j;i , of the matrices K, N2 and N3, respectively, are given by

kj;i ¼ f j;i; n2j;i ðqÞ ¼
XN̄

k¼1

f j;i;kqk; n3j;i ðq; qÞ ¼
XN̄

k;l¼1

f j;i;k;lqkql (31a2c)

Eq. (30) is pre-multiplied by M�1 in order to diagonalize the mass matrix, as a consequence matrix M is
always invertible; the result is

I €qþM�1C _qþ ½M�1KþM�1N2ðqÞ þM�1N3ðq; qÞ�q ¼M�1f0 cosðotÞ, (32)

which can be rewritten in the following form:

I €qþ ~C _qþ ½ ~KþM�1N2ðqÞ þM�1N3ðq; qÞ�q ¼ ~f0 cosðotÞ, (33)

where

~C ¼M�1C; ~K ¼M�1K and ~f0 ¼M�1f0. (34a2c)

Eq. (33) is in the form suitable for numerical integration.

5. Numerical results

Calculations have been performed for harmonic excitation applied at the center of square plates, having the
following dimensions a ¼ b ¼ 0.3m; the excitation frequency has been kept around the natural frequency of
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the fundamental mode (m ¼ 1, n ¼ 1). The boundary conditions are simply supported, immovable edges. In
Section 5.1, isotropic plates are considered, while laminated plates are studied in Section 5.2. Calculations
have been performed by using the computer program AUTO [32] based on the pseudo-arclength continuation
method.

5.1. Isotropic plates

Aluminum square plates are considered with the following dimensions and material properties:
a ¼ b ¼ 0.3m, E ¼ 70GPa, r ¼ 2778 kg/m3 and n ¼ 0.3. Initially, a plate with thickness h ¼ 0.001m
(h/a ¼ 0.0033) is considered. The natural frequency of the fundamental mode, computed by using classical and
shear deformation theories, is given in Table 1.

The response of the plate to harmonic force excitation ~f ¼ 1:74N in the neighborhood of the circular
frequency o1,1 of the fundamental mode is presented in Fig. 2. The response has been obtained by using the
third-order SDT, assuming a modal damping ratio z ¼ 0.065 for all the generalized coordinates and by using a
model with 24 degrees of freedom (dofs). In particular, the model with 24 dofs includes the following
generalized coordinates: w1,1, w3,1, w1,3, w3,3, f11;1

, f13;1
, f11;3

, f13;3
,f21;1

, f23;1
, f21;3

, f23;3
, u2,1, u4,1, u6,1, u8,1, u2,3,

u4,3, v1,2, v1,4, v1,6, v1,8, v3,2, v3,4. Results show a strong hardening-type nonlinearity. The same results have been
obtained in Fig. 3 by using the first-order SDT. In particular, in Fig. 3, a model with 24 dofs is compared with
a reduced model with 15 dofs, giving practically coincident results. The following generalized coordinates are
Table 1

Natural frequency (Hz) of the fundamental mode (1,1) of the square plate a ¼ b ¼ 0.3m computed by using the classical Von Kárman

theory, and first- and third-order shear deformation theories (SDT)

Material h/a Von Kárman First-order SDT Third-order SDT

Aluminum 0.0033 53.025 53.023 53.023

Aluminum 0.1 1590.7 1537.9 1536.4

Laminated 0.01 100.22 99.940 99.926

Laminated 0.1 1002.22 808.53 801.47
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Fig. 2. Frequency-response behavior for the third-order shear deformation theory; h/a ¼ 0.0033, ~f ¼ 1:74N, z1,1 ¼ 0.065 and 24 dofs.

——, stable solutions; - -, unstable solutions.
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Fig. 3. Convergence of the frequency-response curve for the first-order shear deformation theory; h/a ¼ 0.0033, ~f ¼ 1:74N and

z1,1 ¼ 0.065. ——, 15 dofs; - -, 24 dofs.
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used in the 15 dofs model: w1,1, f11;1
, f21;1

, u2,1, u4,1, u6,1, u8,1, u2,3, u4,3, v1,2, v1,4, v1,6, v1,8, v3,2, v3,4; i.e., only one
term is used for w, f1 and f2. For this plate, the response computed by using the Von Kárman, first-order and
third-order shear deformation theories is practically coincident. Results for the Von Kárman theory have been
previously obtained by Amabili [17] for this case, and are in perfect agreement with those obtained by Ribeiro
[14] and Chu and Hermann [6]. According to the Von Kárman theory, the trend of nonlinearity is not affected
by the thickness ratio h/a; however, it is affected according to the shear deformation theories. Therefore, it is
expected to find differences among the plate theories by increasing the thickness ratio h/a.

In the following calculations, the 15 dofs model (13 dofs for the the Von Kárman theory) is used and a plate
with increased thickness h ¼ 0.03m (h/a ¼ 0.1) is considered. The excitation force has been increased in order
to keep the same nondimensionalized value ~f =ðho2

1;1m1;1Þ ¼ 0:249 of the previous cases. The natural frequency
of the fundamental mode is given in Table 1, where the value computed by using the Von Kárman theory is
about 3.5% higher than the value obtained by using shear deformation theories with rotary inertia. The
comparison of the responses computed by using the Von Kárman, first-order and third-order shear
deformation theories is presented in Figs. 4 and 5. Results obtained by the two theories with shear
deformation are coincident, as shown in Fig. 4, but results by the classical Von Kárman theory are very close,
as shown in Fig. 5.

In order to compare the three plate theories for larger vibration amplitudes, the damping ratio is divided by
two in Fig. 6 (z ¼ 0.0325). Also in this case, results obtained by the two theories with shear deformation are
coincident, while the results from the Von Kárman theory are close.

5.2. Laminated plates

Calculations have been performed for a graphite/epoxy (01/901)S symmetric laminated plate with
dimensions a ¼ b ¼ 0.3m and the following material properties of each layer: r ¼ 1000 kg/m3, E1 ¼ 40GPa,
E2 ¼ 1GPa, G12 ¼ G13 ¼ 0.6GPa, G23 ¼ 0.5GPa and n12 ¼ 0.25.

Initially, a plate with thickness h ¼ 0.03m (h/a ¼ 0.1) is considered. The natural frequency of the
fundamental mode, computed by using classical and shear deformation theories, is given in Table 1, where the
value computed by using the Von Kárman theory is about 25% higher than the value obtained by using shear
deformation theories with rotary inertia.
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Fig. 4. Comparison of the frequency-response curves computed by using the first-order and the third-order shear deformation theories;

h/a ¼ 0.1, ~f ¼ 1:31� 106 N, z1,1 ¼ 0.065 and 15 dofs. ——, First-order shear deformation theory; - -, third-order shear deformation

theory.
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Fig. 5. Comparison of the frequency-response curves computed by using the Von Kárman and the third-order shear deformation theories;

h/a ¼ 0.1, ~f ¼ 1:31� 106 N, z1,1 ¼ 0.065 and 15 dofs. ——, Von Kárman theory;- -, third-order shear deformation theory.
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The response of the plate to harmonic force excitation in the neighborhood of the circular frequency o1,1 of
the fundamental mode is presented in Fig. 7. The response has been obtained by using the three different
theories, assuming a modal damping ratio z ¼ 0.0325 for all the generalized coordinates and by using a model
with 24 dofs for the two shear deformation theories and 16 dofs for the Von Kárman theory. It must be
observed that all the dofs related to rotations f1 and f2 must be eliminated for the Von Kárman theory. The
excitation force has been chosen in order to have the same nondimensionalized value of the previous cases of
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Fig. 6. Comparison of the frequency-response curves computed by using Von Kárman, first-order and third-order shear deformation

theories; h/a ¼ 0.1, ~f ¼ 1:31� 106 N, z1,1 ¼ 0.0325 and 15 dofs. – � –, Von Kárman theory; ——, first-order shear deformation theory;

– –, third-order shear deformation theory.
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Fig. 7. Comparison of the frequency-response curves computed by using Von Kárman, first-order and third-order shear deformation

theories for laminated plate; h/a ¼ 0.1, ~f ¼ 128� 103 N, z1,1 ¼ 0.0325 and 24 dofs (16 dofs for the Von Kárman theory). ——, Von

Kárman theory; – –, first-order shear deformation theory; , third-order shear deformation theory; – � –, backbone curve from Ref. [22].
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isotropic plates. Results in Fig. 7 obtained by using the two shear deformation theories are extremely close;
however, the results from the Von Kárman theory are not accurate enough. Moreover, the responses
computed by using the shear deformation theories show a deviation from the single-mode hardening-type
behavior for excitation around 1.6�o1,1. In fact, three 3:1 internal resonances arise between modes (3,1), (1,3)
and (3,3) with mode (1,1) in the frequency range around the fundamental resonance; in particular, at 1.6�o1,1

there is an internal resonance between modes (1,1) and (3,3). No internal resonances are detected by using the
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Von Kárman theory since it gives an inaccurate evaluation of the natural frequencies. A good agreement is found
between the response computed by using shear deformable theories and the backbone curve reported by Ganapathi
et al. [22] for the same case shown in Fig. 7; results in Ref. [22] were obtained by using the first-order SDT.
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Fig. 8. Frequency-response curves computed by using the third-order shear deformation theories for the laminated plate; h/a ¼ 0.1,
~f ¼ 128� 103 N, z1,1 ¼ 0.0325 and 24 dofs. ——, Stable solutions; – –, unstable solutions: (a) generalized coordinate w1,1; (b) generalized

coordinate w3,1; (c) generalized coordinate w1,3; (d) generalized coordinate w3,3; (e) generalized coordinate f11;1
and (f) generalized

coordinate f21;1
.
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The internal resonances are investigated in Fig. 8(a–f), where the main generalized coordinates are shown.
In particular, the generalized coordinate w3,3 is shown in Fig. 8(d) and presents a response amplitude largely
increasing for excitation frequency larger than 1.6�o1,1. Actually the generalized coordinate w3,1, see
Fig. 8(b), presents a response peak at 1.6�o1,1, but the 3:1 internal resonance between modes (1,1) and (3,1) is
at 1.33�o1,1. The generalized coordinate w1,3, see Fig. 8(c), presents a response peak, of smaller amplitude
with respect to the other coordinates involving w, at 1.1�o1,1 (but the internal resonance is at 0.98�o1,1).
Therefore, there is a strong interaction among the generalized coordinates w1,1, w3,1, w1,3 and w3,3 in the
frequency range in the neighborhood of the fundamental frequency.

The same laminated plate with reduced thickness h ¼ 0.003m (h/a ¼ 0.01) is considered in Fig. 9. For this
thin plate, the Von Kárman and shear deformation theories give almost coincident results.
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Fig. 9. Comparison of the frequency-response curves computed by using Von Kárman and third-order shear deformation theories for

laminated plate; h/a ¼ 0.01, ~f ¼ 19:9N, z1,1 ¼ 0.0325 and 24 dofs (16 dofs for the Von Kárman theory). ——, Von Kárman theory; – –,

third-order shear deformation theory.
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Fig. 10. Effect of geometric imperfection A1,1 on the natural frequency of the fundamental mode of the laminated plate; h/a ¼ 0.1, 24 dofs
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Geometric imperfection A1,1 with the same shape of the fundamental mode is introduced to the laminated
plate with thickness h ¼ 0.03m. The effect of this imperfection on the natural frequency of the fundamental
mode is shown in Fig. 10; the frequency is rapidly increasing for imperfections larger than 0.05 times the plate
thickness h.
6. Conclusions

Results show that for isotropic plates, some percent difference (3.5% for h/a ¼ 0.1 in the present case)
is obtained in the calculation of the natural frequency of the fundamental mode between classical and
shear deformation theories. However, nonlinear results are very close. This indicates that it is not
recommended to use a shear deformable theory with rotary inertia to evaluate the nonlinear response of
isotropic moderately thick plates (at least up to h/a ¼ 0.1 for the fundamental mode) since they require
additional dofs to take into account the two additional variables f1 and f2 related to rotations. Eventually, it
may be convenient to correct the linear part of the Von Kárman equation to obtain a correct evaluation of the
natural frequency.

For laminated plates, the differences are increased at the point that for h/a ¼ 0.1 it is highly recommended
to use a shear deformable theory with rotary inertia to calculate the nonlinear response. However, for thin
laminated plates (h/ap0.01), the classical Von Kárman theory should be applied since it allows a reduced size
of the model, at least for the laminated plates investigated; this may not be true in general, particularly for
sandwich plates [35,36]. Between the first-order (with shear correction factor

ffiffiffi
3
p

=2) and the third-order shear
deformation theories, no appreciable differences are found for all the calculations. Moreover, the two theories
require the same number of dofs and computational effort.

The relatively small differences among nonlinear responses computed by using the three theories of plates
may be explained since the nonlinear terms are the same for all the three theories.
Appendix A. Stress–strain relations for a layer within a laminate

The coefficients in Eq. (9) for a lamina are given by

c11 ¼
E1

1� n12n21
; c12 ¼ c21 ¼

E2n12
1� n12n21

; c22 ¼
E2

1� n12n21
; nijEj ¼ njiEi. (A.1)

Usually, the lamina material axes (1,2) do not coincide with the plate reference axes (x,y), while the 3 axis is
coincident with z. Then, the strains and stresses on material axes can be related to the reference axes by using
the following invertible expressions [33]:

s1
s2
t23
t13
t12

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼ T1

sx

sy

tyz

txz

txy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

�1

�2

g23
g13
g12

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼ T2

�x

�y

gyz

gxz

gxy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
, (A.2a,b)

where

T1 ¼

cos2 y sin2 y 0 0 2 sin y cos y

sin2 y cos2 y 0 0 �2 sin y cos y

0 0 cos y �sin y 0

0 0 sin y cos y 0

�sin y cos y sin y cos y 0 0 cos2 y� sin2 y

2
6666664

3
7777775
, (A.3)
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T2 ¼

cos2 y sin2 y 0 0 sin y cos y

sin2 y cos2 y 0 0 �sin y cos y

0 0 cos y �sin y 0

0 0 sin y cos y 0

�2 sin y cos y 2 sin y cos y 0 0 cos2 y� sin2 y

2
6666664

3
7777775
. (A.4)

It can be shown that [34]

ðT�11 Þ
T
¼ T2. (A.5)

Therefore, the matrix ½Q�ðkÞ in Eqs. (10) and (11) is given by

½Q�ðkÞ ¼ ½T�11 CðT�11 Þ
T
�ðkÞ, (A.6)

where C is the 5� 5 matrix of coefficients cij in Eqs. (9) and (A.1). As a consequence of the discontinuous
variation of the stiffness matrix [Q](k) from layer to layer, the stresses may be discontinuous layer
to layer.

Appendix B. Additional terms for asymmetric laminates

Using Eq. (11), boundary conditions (20a,b) can be rewritten in the following form:

Mx ¼
XK

k¼1

Z hðkÞ

hðk�1Þ
Q
ðkÞ
11 ;Q

ðkÞ
12 ;Q

ðkÞ
13 ;Q

ðkÞ
14 ;Q

ðkÞ
15

n o
�
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>>>>>>>>;

zþ

kð0Þx

kð0Þy

0

0
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0
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0

0

kð2Þxy
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9>>>>>>>>>=
>>>>>>>>>;

z4

0
BBBBBBBBB@

1
CCCCCCCCCA

dz ¼ 0

at x ¼ 0; a, (B.1)
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In order to satisfy exactly boundary conditions (B.1) and (B.2) for asymmetric laminates, it is necessary to
introduce additional terms û and v̂ in Eqs. (18a,b), respectively. These additional terms û and v̂ are second-
order terms in the displacement w (linear terms are not considered since they are satisfied by energy
minimization). Eliminating linear terms (since their contribution is satisfied by energy minimization), in each
layer of an asymmetric laminated plate, the following expressions should be satisfied:

qû
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þ

Q
ðkÞ
15

Q
ðkÞ
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By inserting Eqs. (18c) and (19) into (B.3) and (B.4), two differential equations in û and v̂ are obtained. The
terms û and v̂ are

û ¼
1

2

X̂M
m¼1

X̂N

n¼1

X̂M
i¼1

X̂N

j¼1

wmnwij

ðnjÞp
ðnþ jÞa
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a
sin
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b
sin
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b

þ
X̂M
m¼1

X̂N

n¼1

X~M
i¼1

X~N
j¼1

wmnAij

ðnjÞp
ðnþ jÞa

sin
ðnþ jÞpx

a
sin

mpy

b
sin

ipy

b
, (B.5)
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